Copied to
clipboard

G = C52⋊C18order 450 = 2·32·52

The semidirect product of C52 and C18 acting via C18/C3=C6

metabelian, soluble, monomial, A-group

Aliases: C52⋊C18, C5⋊D5⋊C9, (C5×C15).C6, C52⋊C92C2, C3.(C52⋊C6), (C3×C5⋊D5).C3, SmallGroup(450,12)

Series: Derived Chief Lower central Upper central

C1C52 — C52⋊C18
C1C52C5×C15C52⋊C9 — C52⋊C18
C52 — C52⋊C18
C1C3

Generators and relations for C52⋊C18
 G = < a,b,c | a5=b5=c18=1, ab=ba, cac-1=a2b3, cbc-1=a-1b-1 >

25C2
3C5
3C5
25C6
25C9
15D5
15D5
3C15
3C15
25C18
15C3×D5
15C3×D5

Character table of C52⋊C18

 class 123A3B5A5B5C5D6A6B9A9B9C9D9E9F15A15B15C15D15E15F15G15H18A18B18C18D18E18F
 size 125116666252525252525252566666666252525252525
ρ1111111111111111111111111111111    trivial
ρ21-1111111-1-111111111111111-1-1-1-1-1-1    linear of order 2
ρ31111111111ζ32ζ3ζ3ζ32ζ32ζ311111111ζ32ζ32ζ32ζ3ζ3ζ3    linear of order 3
ρ41-1111111-1-1ζ32ζ3ζ3ζ32ζ32ζ311111111ζ6ζ6ζ6ζ65ζ65ζ65    linear of order 6
ρ51-1111111-1-1ζ3ζ32ζ32ζ3ζ3ζ3211111111ζ65ζ65ζ65ζ6ζ6ζ6    linear of order 6
ρ61111111111ζ3ζ32ζ32ζ3ζ3ζ3211111111ζ3ζ3ζ3ζ32ζ32ζ32    linear of order 3
ρ71-1ζ3ζ321111ζ65ζ6ζ95ζ97ζ94ζ92ζ98ζ9ζ32ζ32ζ32ζ3ζ3ζ3ζ3ζ3295929899794    linear of order 18
ρ81-1ζ3ζ321111ζ65ζ6ζ92ζ9ζ97ζ98ζ95ζ94ζ32ζ32ζ32ζ3ζ3ζ3ζ3ζ3292989594997    linear of order 18
ρ911ζ3ζ321111ζ3ζ32ζ92ζ9ζ97ζ98ζ95ζ94ζ32ζ32ζ32ζ3ζ3ζ3ζ3ζ32ζ92ζ98ζ95ζ94ζ9ζ97    linear of order 9
ρ101-1ζ32ζ31111ζ6ζ65ζ97ζ98ζ92ζ9ζ94ζ95ζ3ζ3ζ3ζ32ζ32ζ32ζ32ζ397994959892    linear of order 18
ρ111-1ζ32ζ31111ζ6ζ65ζ94ζ92ζ95ζ97ζ9ζ98ζ3ζ3ζ3ζ32ζ32ζ32ζ32ζ394979989295    linear of order 18
ρ1211ζ3ζ321111ζ3ζ32ζ95ζ97ζ94ζ92ζ98ζ9ζ32ζ32ζ32ζ3ζ3ζ3ζ3ζ32ζ95ζ92ζ98ζ9ζ97ζ94    linear of order 9
ρ1311ζ32ζ31111ζ32ζ3ζ94ζ92ζ95ζ97ζ9ζ98ζ3ζ3ζ3ζ32ζ32ζ32ζ32ζ3ζ94ζ97ζ9ζ98ζ92ζ95    linear of order 9
ρ1411ζ3ζ321111ζ3ζ32ζ98ζ94ζ9ζ95ζ92ζ97ζ32ζ32ζ32ζ3ζ3ζ3ζ3ζ32ζ98ζ95ζ92ζ97ζ94ζ9    linear of order 9
ρ151-1ζ32ζ31111ζ6ζ65ζ9ζ95ζ98ζ94ζ97ζ92ζ3ζ3ζ3ζ32ζ32ζ32ζ32ζ399497929598    linear of order 18
ρ161-1ζ3ζ321111ζ65ζ6ζ98ζ94ζ9ζ95ζ92ζ97ζ32ζ32ζ32ζ3ζ3ζ3ζ3ζ3298959297949    linear of order 18
ρ1711ζ32ζ31111ζ32ζ3ζ97ζ98ζ92ζ9ζ94ζ95ζ3ζ3ζ3ζ32ζ32ζ32ζ32ζ3ζ97ζ9ζ94ζ95ζ98ζ92    linear of order 9
ρ1811ζ32ζ31111ζ32ζ3ζ9ζ95ζ98ζ94ζ97ζ92ζ3ζ3ζ3ζ32ζ32ζ32ζ32ζ3ζ9ζ94ζ97ζ92ζ95ζ98    linear of order 9
ρ196066-3+5/21-51+5-3-5/2000000001-51+5-3-5/2-3-5/2-3+5/21-51+5-3+5/2000000    orthogonal lifted from C52⋊C6
ρ2060661-5-3-5/2-3+5/21+500000000-3-5/2-3+5/21+51+51-5-3-5/2-3+5/21-5000000    orthogonal lifted from C52⋊C6
ρ2160661+5-3+5/2-3-5/21-500000000-3+5/2-3-5/21-51-51+5-3+5/2-3-5/21+5000000    orthogonal lifted from C52⋊C6
ρ226066-3-5/21+51-5-3+5/2000000001+51-5-3+5/2-3+5/2-3-5/21+51-5-3-5/2000000    orthogonal lifted from C52⋊C6
ρ2360-3-3-3-3+3-31+5-3+5/2-3-5/21-500000000ζ3ζ543ζ53ζ3ζ533ζ523-2ζ3ζ54-2ζ3ζ5-2ζ32ζ54-2ζ32ζ5-2ζ32ζ53-2ζ32ζ52ζ32ζ5432ζ532ζ32ζ5332ζ5232-2ζ3ζ53-2ζ3ζ52000000    complex faithful
ρ2460-3-3-3-3+3-31-5-3-5/2-3+5/21+500000000ζ3ζ533ζ523ζ3ζ543ζ53-2ζ3ζ53-2ζ3ζ52-2ζ32ζ53-2ζ32ζ52-2ζ32ζ54-2ζ32ζ5ζ32ζ5332ζ5232ζ32ζ5432ζ532-2ζ3ζ54-2ζ3ζ5000000    complex faithful
ρ2560-3+3-3-3-3-31+5-3+5/2-3-5/21-500000000ζ32ζ5432ζ532ζ32ζ5332ζ5232-2ζ32ζ54-2ζ32ζ5-2ζ3ζ54-2ζ3ζ5-2ζ3ζ53-2ζ3ζ52ζ3ζ543ζ53ζ3ζ533ζ523-2ζ32ζ53-2ζ32ζ52000000    complex faithful
ρ2660-3-3-3-3+3-3-3-5/21+51-5-3+5/200000000-2ζ3ζ53-2ζ3ζ52-2ζ3ζ54-2ζ3ζ5ζ3ζ543ζ53ζ32ζ5432ζ532ζ32ζ5332ζ5232-2ζ32ζ53-2ζ32ζ52-2ζ32ζ54-2ζ32ζ5ζ3ζ533ζ523000000    complex faithful
ρ2760-3+3-3-3-3-3-3-5/21+51-5-3+5/200000000-2ζ32ζ53-2ζ32ζ52-2ζ32ζ54-2ζ32ζ5ζ32ζ5432ζ532ζ3ζ543ζ53ζ3ζ533ζ523-2ζ3ζ53-2ζ3ζ52-2ζ3ζ54-2ζ3ζ5ζ32ζ5332ζ5232000000    complex faithful
ρ2860-3+3-3-3-3-31-5-3-5/2-3+5/21+500000000ζ32ζ5332ζ5232ζ32ζ5432ζ532-2ζ32ζ53-2ζ32ζ52-2ζ3ζ53-2ζ3ζ52-2ζ3ζ54-2ζ3ζ5ζ3ζ533ζ523ζ3ζ543ζ53-2ζ32ζ54-2ζ32ζ5000000    complex faithful
ρ2960-3-3-3-3+3-3-3+5/21-51+5-3-5/200000000-2ζ3ζ54-2ζ3ζ5-2ζ3ζ53-2ζ3ζ52ζ3ζ533ζ523ζ32ζ5332ζ5232ζ32ζ5432ζ532-2ζ32ζ54-2ζ32ζ5-2ζ32ζ53-2ζ32ζ52ζ3ζ543ζ53000000    complex faithful
ρ3060-3+3-3-3-3-3-3+5/21-51+5-3-5/200000000-2ζ32ζ54-2ζ32ζ5-2ζ32ζ53-2ζ32ζ52ζ32ζ5332ζ5232ζ3ζ533ζ523ζ3ζ543ζ53-2ζ3ζ54-2ζ3ζ5-2ζ3ζ53-2ζ3ζ52ζ32ζ5432ζ532000000    complex faithful

Smallest permutation representation of C52⋊C18
On 45 points
Generators in S45
(2 27 29 38 18)(3 10 30 39 19)(5 21 41 32 12)(6 22 42 33 13)(8 15 35 44 24)(9 16 36 45 25)
(1 28 17 26 37)(2 38 27 18 29)(3 10 30 39 19)(4 40 11 20 31)(5 32 21 12 41)(6 22 42 33 13)(7 34 23 14 43)(8 44 15 24 35)(9 16 36 45 25)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)

G:=sub<Sym(45)| (2,27,29,38,18)(3,10,30,39,19)(5,21,41,32,12)(6,22,42,33,13)(8,15,35,44,24)(9,16,36,45,25), (1,28,17,26,37)(2,38,27,18,29)(3,10,30,39,19)(4,40,11,20,31)(5,32,21,12,41)(6,22,42,33,13)(7,34,23,14,43)(8,44,15,24,35)(9,16,36,45,25), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)>;

G:=Group( (2,27,29,38,18)(3,10,30,39,19)(5,21,41,32,12)(6,22,42,33,13)(8,15,35,44,24)(9,16,36,45,25), (1,28,17,26,37)(2,38,27,18,29)(3,10,30,39,19)(4,40,11,20,31)(5,32,21,12,41)(6,22,42,33,13)(7,34,23,14,43)(8,44,15,24,35)(9,16,36,45,25), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45) );

G=PermutationGroup([[(2,27,29,38,18),(3,10,30,39,19),(5,21,41,32,12),(6,22,42,33,13),(8,15,35,44,24),(9,16,36,45,25)], [(1,28,17,26,37),(2,38,27,18,29),(3,10,30,39,19),(4,40,11,20,31),(5,32,21,12,41),(6,22,42,33,13),(7,34,23,14,43),(8,44,15,24,35),(9,16,36,45,25)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)]])

Matrix representation of C52⋊C18 in GL6(𝔽181)

100000
010000
001316700
0013000
62826551414
371191760167180
,
18010000
121680000
00180100
001216800
124821301211414
9911960116167180
,
1471011221384133
80135431681129
871320000
87940000
0000800
0087132800

G:=sub<GL(6,GF(181))| [1,0,0,0,62,37,0,1,0,0,82,119,0,0,13,13,65,176,0,0,167,0,5,0,0,0,0,0,14,167,0,0,0,0,14,180],[180,12,0,0,124,99,1,168,0,0,82,119,0,0,180,12,130,60,0,0,1,168,121,116,0,0,0,0,14,167,0,0,0,0,14,180],[147,80,87,87,0,0,101,135,132,94,0,0,122,43,0,0,0,87,138,16,0,0,0,132,4,81,0,0,80,80,133,129,0,0,0,0] >;

C52⋊C18 in GAP, Magma, Sage, TeX

C_5^2\rtimes C_{18}
% in TeX

G:=Group("C5^2:C18");
// GroupNames label

G:=SmallGroup(450,12);
// by ID

G=gap.SmallGroup(450,12);
# by ID

G:=PCGroup([5,-2,-3,-3,-5,5,36,1443,2348,9004,1359]);
// Polycyclic

G:=Group<a,b,c|a^5=b^5=c^18=1,a*b=b*a,c*a*c^-1=a^2*b^3,c*b*c^-1=a^-1*b^-1>;
// generators/relations

Export

Subgroup lattice of C52⋊C18 in TeX
Character table of C52⋊C18 in TeX

׿
×
𝔽