metabelian, soluble, monomial, A-group
Aliases: C52⋊C18, C5⋊D5⋊C9, (C5×C15).C6, C52⋊C9⋊2C2, C3.(C52⋊C6), (C3×C5⋊D5).C3, SmallGroup(450,12)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C52 — C5×C15 — C52⋊C9 — C52⋊C18 |
C52 — C52⋊C18 |
Generators and relations for C52⋊C18
G = < a,b,c | a5=b5=c18=1, ab=ba, cac-1=a2b3, cbc-1=a-1b-1 >
Character table of C52⋊C18
class | 1 | 2 | 3A | 3B | 5A | 5B | 5C | 5D | 6A | 6B | 9A | 9B | 9C | 9D | 9E | 9F | 15A | 15B | 15C | 15D | 15E | 15F | 15G | 15H | 18A | 18B | 18C | 18D | 18E | 18F | |
size | 1 | 25 | 1 | 1 | 6 | 6 | 6 | 6 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 25 | 25 | 25 | 25 | 25 | 25 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | linear of order 3 |
ρ4 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ6 | ζ6 | ζ6 | ζ65 | ζ65 | ζ65 | linear of order 6 |
ρ5 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ65 | ζ65 | ζ65 | ζ6 | ζ6 | ζ6 | linear of order 6 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | linear of order 3 |
ρ7 | 1 | -1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | ζ65 | ζ6 | ζ95 | ζ97 | ζ94 | ζ92 | ζ98 | ζ9 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ3 | ζ32 | -ζ95 | -ζ92 | -ζ98 | -ζ9 | -ζ97 | -ζ94 | linear of order 18 |
ρ8 | 1 | -1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | ζ65 | ζ6 | ζ92 | ζ9 | ζ97 | ζ98 | ζ95 | ζ94 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ3 | ζ32 | -ζ92 | -ζ98 | -ζ95 | -ζ94 | -ζ9 | -ζ97 | linear of order 18 |
ρ9 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ92 | ζ9 | ζ97 | ζ98 | ζ95 | ζ94 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ3 | ζ32 | ζ92 | ζ98 | ζ95 | ζ94 | ζ9 | ζ97 | linear of order 9 |
ρ10 | 1 | -1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | ζ6 | ζ65 | ζ97 | ζ98 | ζ92 | ζ9 | ζ94 | ζ95 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ32 | ζ3 | -ζ97 | -ζ9 | -ζ94 | -ζ95 | -ζ98 | -ζ92 | linear of order 18 |
ρ11 | 1 | -1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | ζ6 | ζ65 | ζ94 | ζ92 | ζ95 | ζ97 | ζ9 | ζ98 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ32 | ζ3 | -ζ94 | -ζ97 | -ζ9 | -ζ98 | -ζ92 | -ζ95 | linear of order 18 |
ρ12 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ95 | ζ97 | ζ94 | ζ92 | ζ98 | ζ9 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ3 | ζ32 | ζ95 | ζ92 | ζ98 | ζ9 | ζ97 | ζ94 | linear of order 9 |
ρ13 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ94 | ζ92 | ζ95 | ζ97 | ζ9 | ζ98 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ32 | ζ3 | ζ94 | ζ97 | ζ9 | ζ98 | ζ92 | ζ95 | linear of order 9 |
ρ14 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ98 | ζ94 | ζ9 | ζ95 | ζ92 | ζ97 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ3 | ζ32 | ζ98 | ζ95 | ζ92 | ζ97 | ζ94 | ζ9 | linear of order 9 |
ρ15 | 1 | -1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | ζ6 | ζ65 | ζ9 | ζ95 | ζ98 | ζ94 | ζ97 | ζ92 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ32 | ζ3 | -ζ9 | -ζ94 | -ζ97 | -ζ92 | -ζ95 | -ζ98 | linear of order 18 |
ρ16 | 1 | -1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | ζ65 | ζ6 | ζ98 | ζ94 | ζ9 | ζ95 | ζ92 | ζ97 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ3 | ζ32 | -ζ98 | -ζ95 | -ζ92 | -ζ97 | -ζ94 | -ζ9 | linear of order 18 |
ρ17 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ97 | ζ98 | ζ92 | ζ9 | ζ94 | ζ95 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ32 | ζ3 | ζ97 | ζ9 | ζ94 | ζ95 | ζ98 | ζ92 | linear of order 9 |
ρ18 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ9 | ζ95 | ζ98 | ζ94 | ζ97 | ζ92 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ32 | ζ3 | ζ9 | ζ94 | ζ97 | ζ92 | ζ95 | ζ98 | linear of order 9 |
ρ19 | 6 | 0 | 6 | 6 | -3+√5/2 | 1-√5 | 1+√5 | -3-√5/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1-√5 | 1+√5 | -3-√5/2 | -3-√5/2 | -3+√5/2 | 1-√5 | 1+√5 | -3+√5/2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C52⋊C6 |
ρ20 | 6 | 0 | 6 | 6 | 1-√5 | -3-√5/2 | -3+√5/2 | 1+√5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -3-√5/2 | -3+√5/2 | 1+√5 | 1+√5 | 1-√5 | -3-√5/2 | -3+√5/2 | 1-√5 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C52⋊C6 |
ρ21 | 6 | 0 | 6 | 6 | 1+√5 | -3+√5/2 | -3-√5/2 | 1-√5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -3+√5/2 | -3-√5/2 | 1-√5 | 1-√5 | 1+√5 | -3+√5/2 | -3-√5/2 | 1+√5 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C52⋊C6 |
ρ22 | 6 | 0 | 6 | 6 | -3-√5/2 | 1+√5 | 1-√5 | -3+√5/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1+√5 | 1-√5 | -3+√5/2 | -3+√5/2 | -3-√5/2 | 1+√5 | 1-√5 | -3-√5/2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C52⋊C6 |
ρ23 | 6 | 0 | -3-3√-3 | -3+3√-3 | 1+√5 | -3+√5/2 | -3-√5/2 | 1-√5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3ζ54+ζ3ζ5-ζ3 | ζ3ζ53+ζ3ζ52-ζ3 | -2ζ3ζ54-2ζ3ζ5 | -2ζ32ζ54-2ζ32ζ5 | -2ζ32ζ53-2ζ32ζ52 | ζ32ζ54+ζ32ζ5-ζ32 | ζ32ζ53+ζ32ζ52-ζ32 | -2ζ3ζ53-2ζ3ζ52 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ24 | 6 | 0 | -3-3√-3 | -3+3√-3 | 1-√5 | -3-√5/2 | -3+√5/2 | 1+√5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3ζ53+ζ3ζ52-ζ3 | ζ3ζ54+ζ3ζ5-ζ3 | -2ζ3ζ53-2ζ3ζ52 | -2ζ32ζ53-2ζ32ζ52 | -2ζ32ζ54-2ζ32ζ5 | ζ32ζ53+ζ32ζ52-ζ32 | ζ32ζ54+ζ32ζ5-ζ32 | -2ζ3ζ54-2ζ3ζ5 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ25 | 6 | 0 | -3+3√-3 | -3-3√-3 | 1+√5 | -3+√5/2 | -3-√5/2 | 1-√5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ32ζ54+ζ32ζ5-ζ32 | ζ32ζ53+ζ32ζ52-ζ32 | -2ζ32ζ54-2ζ32ζ5 | -2ζ3ζ54-2ζ3ζ5 | -2ζ3ζ53-2ζ3ζ52 | ζ3ζ54+ζ3ζ5-ζ3 | ζ3ζ53+ζ3ζ52-ζ3 | -2ζ32ζ53-2ζ32ζ52 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ26 | 6 | 0 | -3-3√-3 | -3+3√-3 | -3-√5/2 | 1+√5 | 1-√5 | -3+√5/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2ζ3ζ53-2ζ3ζ52 | -2ζ3ζ54-2ζ3ζ5 | ζ3ζ54+ζ3ζ5-ζ3 | ζ32ζ54+ζ32ζ5-ζ32 | ζ32ζ53+ζ32ζ52-ζ32 | -2ζ32ζ53-2ζ32ζ52 | -2ζ32ζ54-2ζ32ζ5 | ζ3ζ53+ζ3ζ52-ζ3 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ27 | 6 | 0 | -3+3√-3 | -3-3√-3 | -3-√5/2 | 1+√5 | 1-√5 | -3+√5/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2ζ32ζ53-2ζ32ζ52 | -2ζ32ζ54-2ζ32ζ5 | ζ32ζ54+ζ32ζ5-ζ32 | ζ3ζ54+ζ3ζ5-ζ3 | ζ3ζ53+ζ3ζ52-ζ3 | -2ζ3ζ53-2ζ3ζ52 | -2ζ3ζ54-2ζ3ζ5 | ζ32ζ53+ζ32ζ52-ζ32 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ28 | 6 | 0 | -3+3√-3 | -3-3√-3 | 1-√5 | -3-√5/2 | -3+√5/2 | 1+√5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ32ζ53+ζ32ζ52-ζ32 | ζ32ζ54+ζ32ζ5-ζ32 | -2ζ32ζ53-2ζ32ζ52 | -2ζ3ζ53-2ζ3ζ52 | -2ζ3ζ54-2ζ3ζ5 | ζ3ζ53+ζ3ζ52-ζ3 | ζ3ζ54+ζ3ζ5-ζ3 | -2ζ32ζ54-2ζ32ζ5 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ29 | 6 | 0 | -3-3√-3 | -3+3√-3 | -3+√5/2 | 1-√5 | 1+√5 | -3-√5/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2ζ3ζ54-2ζ3ζ5 | -2ζ3ζ53-2ζ3ζ52 | ζ3ζ53+ζ3ζ52-ζ3 | ζ32ζ53+ζ32ζ52-ζ32 | ζ32ζ54+ζ32ζ5-ζ32 | -2ζ32ζ54-2ζ32ζ5 | -2ζ32ζ53-2ζ32ζ52 | ζ3ζ54+ζ3ζ5-ζ3 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ30 | 6 | 0 | -3+3√-3 | -3-3√-3 | -3+√5/2 | 1-√5 | 1+√5 | -3-√5/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2ζ32ζ54-2ζ32ζ5 | -2ζ32ζ53-2ζ32ζ52 | ζ32ζ53+ζ32ζ52-ζ32 | ζ3ζ53+ζ3ζ52-ζ3 | ζ3ζ54+ζ3ζ5-ζ3 | -2ζ3ζ54-2ζ3ζ5 | -2ζ3ζ53-2ζ3ζ52 | ζ32ζ54+ζ32ζ5-ζ32 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
(2 27 29 38 18)(3 10 30 39 19)(5 21 41 32 12)(6 22 42 33 13)(8 15 35 44 24)(9 16 36 45 25)
(1 28 17 26 37)(2 38 27 18 29)(3 10 30 39 19)(4 40 11 20 31)(5 32 21 12 41)(6 22 42 33 13)(7 34 23 14 43)(8 44 15 24 35)(9 16 36 45 25)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)
G:=sub<Sym(45)| (2,27,29,38,18)(3,10,30,39,19)(5,21,41,32,12)(6,22,42,33,13)(8,15,35,44,24)(9,16,36,45,25), (1,28,17,26,37)(2,38,27,18,29)(3,10,30,39,19)(4,40,11,20,31)(5,32,21,12,41)(6,22,42,33,13)(7,34,23,14,43)(8,44,15,24,35)(9,16,36,45,25), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)>;
G:=Group( (2,27,29,38,18)(3,10,30,39,19)(5,21,41,32,12)(6,22,42,33,13)(8,15,35,44,24)(9,16,36,45,25), (1,28,17,26,37)(2,38,27,18,29)(3,10,30,39,19)(4,40,11,20,31)(5,32,21,12,41)(6,22,42,33,13)(7,34,23,14,43)(8,44,15,24,35)(9,16,36,45,25), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45) );
G=PermutationGroup([[(2,27,29,38,18),(3,10,30,39,19),(5,21,41,32,12),(6,22,42,33,13),(8,15,35,44,24),(9,16,36,45,25)], [(1,28,17,26,37),(2,38,27,18,29),(3,10,30,39,19),(4,40,11,20,31),(5,32,21,12,41),(6,22,42,33,13),(7,34,23,14,43),(8,44,15,24,35),(9,16,36,45,25)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)]])
Matrix representation of C52⋊C18 ►in GL6(𝔽181)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 13 | 167 | 0 | 0 |
0 | 0 | 13 | 0 | 0 | 0 |
62 | 82 | 65 | 5 | 14 | 14 |
37 | 119 | 176 | 0 | 167 | 180 |
180 | 1 | 0 | 0 | 0 | 0 |
12 | 168 | 0 | 0 | 0 | 0 |
0 | 0 | 180 | 1 | 0 | 0 |
0 | 0 | 12 | 168 | 0 | 0 |
124 | 82 | 130 | 121 | 14 | 14 |
99 | 119 | 60 | 116 | 167 | 180 |
147 | 101 | 122 | 138 | 4 | 133 |
80 | 135 | 43 | 16 | 81 | 129 |
87 | 132 | 0 | 0 | 0 | 0 |
87 | 94 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 80 | 0 |
0 | 0 | 87 | 132 | 80 | 0 |
G:=sub<GL(6,GF(181))| [1,0,0,0,62,37,0,1,0,0,82,119,0,0,13,13,65,176,0,0,167,0,5,0,0,0,0,0,14,167,0,0,0,0,14,180],[180,12,0,0,124,99,1,168,0,0,82,119,0,0,180,12,130,60,0,0,1,168,121,116,0,0,0,0,14,167,0,0,0,0,14,180],[147,80,87,87,0,0,101,135,132,94,0,0,122,43,0,0,0,87,138,16,0,0,0,132,4,81,0,0,80,80,133,129,0,0,0,0] >;
C52⋊C18 in GAP, Magma, Sage, TeX
C_5^2\rtimes C_{18}
% in TeX
G:=Group("C5^2:C18");
// GroupNames label
G:=SmallGroup(450,12);
// by ID
G=gap.SmallGroup(450,12);
# by ID
G:=PCGroup([5,-2,-3,-3,-5,5,36,1443,2348,9004,1359]);
// Polycyclic
G:=Group<a,b,c|a^5=b^5=c^18=1,a*b=b*a,c*a*c^-1=a^2*b^3,c*b*c^-1=a^-1*b^-1>;
// generators/relations
Export
Subgroup lattice of C52⋊C18 in TeX
Character table of C52⋊C18 in TeX